Nonlinear Model Predictive Control of a Laboratory Gas Turbine Installation
نویسندگان
چکیده
The feasibility of model predictive control (MPC) applied to a laboratory gas turbine installation is investigated. MPC explicitly incorporates (input and output) constraints in its optimizations, which explains the choice for this computationally demanding control strategy. Strong nonlinearities, displayed by the gas turbine installation, cannot always be handled adequately by standard linear MPC. Therefore, we resort to nonlinear methods, based on successive linearization and nonlinear prediction as well as the combination of these. We implement these methods, using a nonlinear model of the installation, and compare them to linear MPC. It is shown that controller performance can be improved, without increasing controller execution-time excessively.
منابع مشابه
Constrained Model Predictive Control of Low-power Industrial Gas Turbine
Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...
متن کاملMultivariable Model Predictive Control for a Gas Turbine Power Plant
In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet guide vanes position. A nonlinear model is introduced using conventional mathematical models and ARX identification procedure as gas turbine plant ...
متن کاملطراحی کنترل کننده پیش بین سیستم بویلر- توربین
A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...
متن کاملModel reduction and MIMO model predictive control of gas turbine systems
This paper presents the development and experimental implementation of an online, fully nonlinear model predictive controller (NMPC) for a gas turbine. The reduced-order, internal model used in the controller was developed from an original high-order, physics-based model using rigorous time scale separation arguments that may be extended to any gas turbine system. A control problem for a protot...
متن کاملA New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant
In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...
متن کامل